
event.cwi.nl/lsde2015

Large-Scale Data Engineering
Some notes on Access Patterns, Latency,

 Bandwidth

+ Tips for
practical

event.cwi.nl/lsde2015

Memory Hierarchy

event.cwi.nl/lsde2015

Hardware Progress

Transistors CPU performance

event.cwi.nl/lsde2015

RAM,Disk Improvement Over the Years

 RAM Magnetic Disk

event.cwi.nl/lsde2015

Latency Lags Bandwidth
• Communications of the ACM, 2004

event.cwi.nl/lsde2015

Geeks on Latency

event.cwi.nl/lsde2015

Sequential Access Hides Latency
• Sequential RAM access

– CPU prefetching: multiple consecutive cache lines being requested
concurrently

• Sequential Magnetic Disk Access
– Disk head moved once
– Data is streamed as the disk spins under the head

• Sequential Network Access
– Full network packets
– Multiple packets in transit concurrently

event.cwi.nl/lsde2015

Consequences For Algorithms
• Analyze the main data structures

– How big are they?
• Are they bigger than RAM?
• Are they bigger than CPU cache (a few MB)?

– How are they laid out in memory or on disk?
• One area, multiple areas?

Java Object Data Structure
vs
memory pages (or cache lines)

event.cwi.nl/lsde2015

Consequences For Algorithms
• Analyze your access patterns

– Sequential: you’re OK
– Random: it better fit in cache!

• What is the access granularity?
• Is there temporal locality?
• Is there spatial locality?

lo
ca

tio
n

time time

event.cwi.nl/lsde2015

Storage Layout of a Table

event.cwi.nl/lsde2015

Improving Bad Access Patterns
• Minimize Random Memory Access

– Apply filters first. Less accesses is better.

• Denormalize the Schema
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger)

• Trade Random Access For Sequential Access
– perform a 100K random key lookups in a large table
  put 100K keys in a hash table, then
 scan table and lookup keys in hash table

• Try to make the randomly accessed region smaller
– Remove unused data from the structure
– Apply data compression
– Cluster or Partition the data (improve locality) …hard for social graphs

• If the random lookups often fail to find a result
– Use a Bloom Filter

event.cwi.nl/lsde2015

Bloom Filter

event.cwi.nl/lsde2015

Assignment 1: Querying a Social Graph

event.cwi.nl/lsde2015

LDBC Data generator
• Synthetic dataset available in different
 scale factors

– SF100  for quick testing
– SF3000  the real deal

• Very complex graph
– Power laws (e.g. degree)
– Huge Connected Component
– Small diameter
– Data correlations
 Chinese have more Chinese names

– Structure correlations
 Chinese have more Chinese friends

event.cwi.nl/lsde2015

CSV file schema
• See: http://wikistats.ins.cwi.nl/lsde-data/practical_1
• Counts for sf3000 (total 37GB)

Person (9M)
PersonId PK
FirstName
LastName
Gender
Birthday
CreationDate
LocationIP
BrowserUsed
LocatedIn

Knows(1.3B)
PersonFrom
PersonTo

interests(.2B)
PersonID
tagID

Tags (16K)
TagID
Name
URL

Place(1.4K
PlaceID PK
URL
type

http://wikistats.ins.cwi.nl/lsde-data/practical_1

event.cwi.nl/lsde2015

The Query
• The marketeers of a social network have been data mining the musical

preferences of their users. They have built statistical models which predict
given an interest in say artists A2 and A3, that the person would also like
A1 (i.e. rules of the form: A2 and A3  A1). Now, they are commercially
exploiting this knowledge by selling targeted ads to the management of
artists who, in turn, want to sell concert tickets to the public but in the
process also want to expand their artists' fanbase.

• The ad is a suggestion for people who already are interested in A1 to buy
concert tickets of artist A1 (with a discount!) as a birthday present for a
friend ("who we know will love it" - the social network says) who lives in the
same city, who is not yet interested in A1 yet, but is interested in other
artists A2, A3 and A4 that the data mining model predicts to be correlated
with A1.

event.cwi.nl/lsde2015

The Query
For all persons P :

• who have their birthday on or in between D1..D2

• who do not like A1 yet

 we give a score of

– 1 for liking any of the artists A2, A3 and A4 and

– 0 if not

the final score, the sum, hence is a number between 0 and 3.

Further, we look for friends F:

– Where P and F who know each other mutually

– Where P and F live in the same city and

– Where F already likes A1

 The answer of the query is a table (score, P, F) with only scores > 0

event.cwi.nl/lsde2015

Binary files
• Created by “loader” program in example github repo
• Total size: 6GB

Person.bin
PersonId PK
Birthday
LocatedIn
Knows_first
Knows_n
Interests_first
Interests_n

Knows.bin
PersonPos

interests.bin
tagID

event.cwi.nl/lsde2015

What it looks like
• Created by “loader” program in example github repo
• Total size: 6GB

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

24bytes
* 8.9M

4bytes
* 1.3B

event.cwi.nl/lsde2015

The Naïve Implementation
The “cruncher” program

Go through the persons P sequentially

• counting how many of the artists A2,A3,A4 are liked as the score

 for those with score>0:

– visit all persons F known to P.

 For each F:

• checks on equal location

• check whether F already likes A1

• check whether F also knows P

if all this succeeds (score,P,F) is added to a result table.

event.cwi.nl/lsde2015

Naïve Query Implementation
• “cruncher”

Person.bin

Knows.bin

i
n
t
e
r
e
s
t
s
.
b
i
n

knows_first

knows_n

2bytes
* 204M

24bytes
* 8.9M

4bytes
* 1.3B

event.cwi.nl/lsde2015

Challenges, questions
For the “reorg” program:
• Can we still shave away some data and make the hot potatoes smaller?
• Partition/Cluster the data?

For the “query” program:
• Can we trade random access for sequential access?

– Multiple passes, hash lookup?
• Is maybe columnar storage a good idea?
• Bloom filters? Vectorized procesing?

We will meet on the leaderboard!

	Large-Scale Data Engineering
	Memory Hierarchy
	Hardware Progress
	RAM,Disk Improvement Over the Years
	Latency Lags Bandwidth
	Geeks on Latency
	Sequential Access Hides Latency
	Consequences For Algorithms
	Consequences For Algorithms
	Storage Layout of a Table
	Improving Bad Access Patterns
	Bloom Filter
	Assignment 1: Querying a Social Graph
	LDBC Data generator
	CSV file schema
	The Query
	The Query
	Binary files
	What it looks like
	The Naïve Implementation
	Naïve Query Implementation
	Challenges, questions

