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Large-Scale Data Engineering 
Some notes on Access Patterns, Latency, 

     Bandwidth 
 

+ Tips for 
practical 
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Memory Hierarchy 
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Hardware Progress 

Transistors  CPU performance 
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RAM,Disk Improvement Over the Years 

 RAM  Magnetic Disk 
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Latency Lags Bandwidth 
• Communications of the ACM, 2004 
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Geeks on Latency 
 



event.cwi.nl/lsde2015 

Sequential Access Hides Latency 
• Sequential RAM access 

– CPU prefetching: multiple consecutive cache lines being requested 
concurrently 

• Sequential Magnetic Disk Access 
– Disk head moved once 
– Data is streamed as the disk spins under the head 

• Sequential Network Access 
– Full network packets 
– Multiple packets in transit concurrently 
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Consequences For Algorithms 
• Analyze the main data structures 

– How big are they? 
• Are they bigger than RAM? 
• Are they bigger than CPU cache (a few MB)? 

– How are they laid out in memory or on disk? 
• One area, multiple areas? 

Java Object Data Structure  
vs 
memory pages (or cache lines)  
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Consequences For Algorithms 
• Analyze your access patterns 

– Sequential: you’re OK 
– Random: it better fit in cache!  

• What is the access granularity? 
• Is there temporal locality? 
• Is there spatial locality? 

 

lo
ca

tio
n 

time time 



event.cwi.nl/lsde2015 

Storage Layout of a Table 
 



event.cwi.nl/lsde2015 

Improving Bad Access Patterns 
• Minimize Random Memory Access 

– Apply filters first. Less accesses is better.  

• Denormalize the Schema 
– Remove joins/lookups, add looked up stuff to the table (but.. makes it bigger) 

• Trade Random Access For Sequential Access 
– perform a 100K random key lookups in a large table 
  put 100K keys in a hash table, then 
  scan table and lookup keys in hash table  

• Try to make the randomly accessed region smaller 
– Remove unused data from the structure 
– Apply data compression 
– Cluster or Partition the data (improve locality) …hard for social graphs 

• If the random lookups often fail to find a result 
– Use a Bloom Filter 
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Bloom Filter 
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Assignment 1: Querying a Social Graph 
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LDBC Data generator 
• Synthetic dataset available in different  
   scale factors 

– SF100  for quick testing  
– SF3000  the real deal 

• Very complex graph 
– Power laws (e.g. degree) 
– Huge Connected Component 
– Small diameter 
– Data correlations 
 Chinese have more Chinese names 

– Structure correlations 
 Chinese have more Chinese friends 
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CSV file schema 
• See: http://wikistats.ins.cwi.nl/lsde-data/practical_1 
• Counts for sf3000 (total 37GB) 

Person (9M) 
PersonId  PK 
FirstName 
LastName 
Gender 
Birthday 
CreationDate 
LocationIP 
BrowserUsed 
LocatedIn 

Knows(1.3B) 
PersonFrom 
PersonTo 

interests(.2B) 
PersonID 
tagID 

Tags (16K) 
TagID 
Name 
URL 

Place(1.4K 
PlaceID PK 
URL 
type 

http://wikistats.ins.cwi.nl/lsde-data/practical_1
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The Query 
• The marketeers of a social network have been data mining the musical 

preferences of their users. They have built statistical models which predict 
given an interest in say artists A2 and A3, that the person would also like 
A1 (i.e. rules of the form: A2 and A3  A1). Now, they are commercially 
exploiting this knowledge by selling targeted ads to the management of 
artists who, in turn, want to sell concert tickets to the public but in the 
process also want to expand their artists' fanbase. 

• The ad is a suggestion for people who already are interested in A1 to buy 
concert tickets of artist A1 (with a discount!) as a birthday present for a 
friend ("who we know will love it" - the social network says) who lives in the 
same city, who is not yet interested in A1 yet, but is interested in other 
artists A2, A3 and A4 that the data mining model predicts to be correlated 
with A1. 
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The Query 
For all persons P : 

• who have their birthday on or in between D1..D2  

• who do not like A1 yet 

 we give a score of  

– 1 for liking any of the artists A2, A3 and A4 and  

– 0 if not  

the final score, the sum, hence is a number between 0 and 3. 

Further, we look for friends F: 

– Where P and F who know each other mutually 

– Where P and F live in the same city and  

– Where F already likes A1 

 The answer of the query is a table (score, P, F) with only scores > 0 
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Binary files 
• Created by “loader” program in example github repo 
• Total size: 6GB 

 

Person.bin 
PersonId  PK 
Birthday 
LocatedIn 
Knows_first 
Knows_n 
Interests_first 
Interests_n 
 

Knows.bin 
PersonPos 

interests.bin 
tagID 
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What it looks like 
• Created by “loader” program in example github repo 
• Total size: 6GB 

 

Person.bin 

Knows.bin 
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knows_first 

knows_n 

2bytes  
* 204M 

24bytes  
* 8.9M 

4bytes  
* 1.3B 
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The Naïve Implementation 
The “cruncher” program 

 

Go through the persons P sequentially 

• counting how many of the artists A2,A3,A4 are liked as the score  

 for those with score>0: 

– visit all persons F known to P.  

 For each F: 

• checks on equal location  

• check whether F already likes A1 

• check whether F also knows P  

if all this succeeds (score,P,F) is added to a result table. 
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Naïve Query Implementation 
• “cruncher”  

 

Person.bin 

Knows.bin 
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knows_first 

knows_n 

2bytes  
* 204M 

24bytes  
* 8.9M 

4bytes  
* 1.3B 
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Challenges, questions 
For the “reorg” program: 
• Can we still shave away some data and make the hot potatoes smaller? 
• Partition/Cluster the data? 
 
For the “query” program: 
• Can we trade random access for sequential access? 

– Multiple passes, hash lookup? 
• Is maybe columnar storage a good idea? 
• Bloom filters? Vectorized procesing? 

 
 

We will meet on the leaderboard! 
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